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Abstract. Bioenergy is one of the widespread renewable energy sources. Energy from biomass thermal conversion 

can reduce greenhouse emissions and have a positive effect on climate change. Biomass conversion is generally 

carried out in reactors of cylindrical shape. From a modelling point of view many factors have to be taken into 

account in order to optimize thermal efficiency of the conversion process. One of the important methods for the 

analysis of complex fluid flows is hydrodynamic stability theory. Base flow solution in classical hydrodynamic 

stability problems is usually found as a simple analytical solution of the equations of motion. Biomass conversion 

problems lead to nonlinear boundary value problems, which can be either solved numerically or analyzed using 

the bifurcation theory. In the present paper we analyze a mathematical model of heat transfer in the presence of 

nonlinear heat sources. This model includes the study of positive solutions to a nonlinear boundary value problem 

with certain boundary conditions. The equations in a problem contain several parameters, which essentially affect 

the behaviour and the number of solutions. Bifurcation analysis of the problem, conducted with respect to the 

parameters, allows obtaining somewhat precise results on the number of positive solutions. Generally, two, one 

and zero positive solutions are possible, depending on the values of the parameters. The obtained solutions 

represent base flow for the hydrodynamic stability problem, which can be solved with the objective to identify the 

factors affecting the conversion process.  

Keywords: biomass thermal conversion; hydrodynamic stability; nonlinear boundary value problem; bifurcation 

analysis. 

Introduction 

Much attention is devoted nowadays to biomass thermal conversion with the objective to obtain 

more efficient and „green” energy sources. Energy conversion technologies are currently developed in 

many countries as a step towards bio-based economy, see [1-3]. Conversion process is a complex 

multiphysics problem, where combustion, heat transfer and fluid motion are coupled, see [4; 5]. There 

are three major methods for investigation of complex physical processes in nature and engineering: 

experimental studies, numerical modeling, and stability analysis. The approach based on linear stability 

analysis is used in the present paper. 

Equations of thermal convection under the Boussinesq approximation for a viscous incompressible 

fluid (in dimensionless form) are used to describe biomass thermal conversion: 
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where  v  – velocity vector; 

 T – temperature;  

 p – pressure;  

 ( )0,0,1k = – unit vector in the vertical direction.  

The flow is characterized by three parameters: the Grashof number Gr, the Prandtl number Pr, and 

the Frank-Kamenetskii parameter F. The flow is generated by internal heat sources that are distributed 

within the fluid due to chemical reactions in accordance with the Arrhenius law. The density of heat 

sources is a nonlinear function of the temperature; see the second term on the right-hand side of (2). 

Frank-Kamenetskii transformation, see [6], is used to transform the nonlinear term.  
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In practice, thermal conversion of biomass takes place in cylindrical containers, see [4; 5]. Consider 

flow in a tall vertical annulus of inner and outer radii R1 and R2, respectively. The walls of the annulus 

are maintained at equal temperatures. 

The next step in a linear stability analysis is to define the base flow (usually the flow of a simple 

structure satisfying the equations of motion). We assume that the base flow has the form 

 ( )0 0 0 01 020,0, ( ) , ( ), ( ) ( ),v v r T T r p p r p z= = = +    (4) 

where  ( ), ,r z  – system of cylindrical polar coordinates with the origin at the axes of the 

 cylinders.  

Substituting (4) into (1)-(3), we obtain the boundary value problem 

 0
0 0 ,

v
v T C
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 00
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where  
02 /C dp dz= −  – constant pressure gradient in the vertical direction.  

The annulus is assumed to be closed, so that the total fluid flux through the cross-section is equal 

to zero: 

 
1

0( ) 0,

R

rv r dr =    (7) 

where  
1 2/R R R= .  

The boundary conditions are 

 
0 0(1) ( ) 0,T T R= =   (8) 

 
0 0(1) ( ) 0.v v R= =   (9) 

It follows from (5)-(9) that the problem for the function T0(R) can be solved separately. In addition, 

nonlinearity in explicit form appears only in (6). Thus, the structure of the base flow is determined by 

the properties of the boundary value problem (6), (8). In the sequel we use bifurcation analysis to 

determine the structure and number of solutions of (6), (8).  

Bifurcation analysis 

To treat the problem (6), (8), let us consider first the auxiliary initial value problem 

 0 ( )0
0 0 0

( )
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T rT r
T r Fe T T

r
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Acting like in [6], by the change of variables 

 
0, ( ) ( ) 2 ,tr e T r w t t−= = +   (11) 

the problem (10) reduces to the initial value problem 

 ( )( ) 0, (0) 0, (0) 2. + = = = −w tw t Fe w w   (12) 

Integrating the equation in (12), we obtain  
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Taking into account [7] and the initial conditions in (12), we have 
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It follows from (11) and (13) that the function 
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  (14) 

solves the problem (10). 

Suppose that R is a fixed number in the interval (0,1).  If T0(r) is given by (14), then the equation 

T0(R) = 0 defines the bifurcation curve ГR in the (F,β) -plane, which determines all positive solutions of 

the boundary value problem (6), (8). By calculations, T0(R) = 0, if and only if gR(F,β) = 0, where 
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Thereby,  

  2( , ) : 0, 0, ( , ) 0 .R RF F g F   =    =  

Numerically analyzing the bifurcation curve ГR, we conclude that there exists a positive number F* 

such that the boundary value problem (6), (8) has  

1. exactly two positive solutions if F  (0, F*), 

2. a unique positive solution if F = F*, 

3. no positive solutions if F > F*. 

Notice that these conclusions are consistent with the results obtained in [8; 9] and they are valid for 

every aspect ratio 1/R. Item c) has a clear physical meaning: if the Frank-Kamenetskii parameter F 

exceeds a certain value (that is, if the heat release as a result of the reaction is large), there is no steady 

solution of (6), (8). This situation is referred to as the thermal explosion in the literature, see [10]. 

Numerical results and discussion 

In Fig. 1, the bifurcation curve ГR in the (F,β)-plane is depicted for R = 0.3. The vertical straight 

line F = 3 and the curve ГR intersect at the points (F,β1) = (3, 1.0792) (in green) and (F,β2) = (3, 9.9598) 

(in blue). Both points determine the positive solutions of the boundary value problem (6), (8) for F = 3; 

see the green and blue graphs in Fig. 2. The bifurcation curve ГR has a unique turning point 

(F*,β*) = (6.9208, 4.6566) (in brown). The last point determines a unique positive solution of (6), (8) for 

F = F*; see the brown graph in Fig. 2. It is seen from Fig. 2 that the green curve should be interpreted as 

the base flow temperature distribution in linear stability analysis (physically realizable distribution is 

the one with smaller temperature values). Thus, the analysis of different solutions helps select the base 

flow profile for linear stability. 

The graphs of the two solutions for the base flow temperature distribution in an annulus with R = 0.3 

and F = 3 are shown in Fig. 3; we plot the graphs of  

 ( )2 2
0( , )u x y T x y= +   

for β1 = 1.0792 (green curves) and β2 = 9.9598 (blue curves), where T0 is defined by (14). The physically 

realizable case is represented by green curves.  
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Fig. 1. Bifurcation curve ГR if R = 0.3 Fig. 2. Three positive solutions of (6), (8) if R = 0.3 

 

Fig. 3. Two solutions of the base flow temperature distribution 

Let us investigate the evolution of bifurcation curves ГR, if the positive parameter R  in (15) changes 

from zero to one. For a fixed positive R in the interval (0,1), a point (F*,β*)  ГR is a turning point of ГR, 

if the tangent line  

 * * * * * *( , )( ) ( , )( ) 0R Rg g
F F F F

F
   



 
− + − =

 
  

of ГR at the point (F*,β*) is vertical in the (F,β)-plane, that is,  

 * *( , ) 0.Rg
F 




=


  

Hence, the turning points of ГR can be determined from the following system:  

 ( ), 0,Rg F  =  ( ), 0.Rg
F 




=


  

We can approximate the data {F*,β*} from Table 1 by the function β = ϕ(F), where 

 ( ) 5 3454.7794 70.8056 22.7043 0.759267 0.0021133 6.43759.F F F F F F = − + + + −   

Then, max|ϕ(F*) – β*| < 10-3 for all the pairs {F*,β*} from Table 1. Similarly, we can approximate 

the data {R,F*} from Table 1 by the function F = ψ(R), where 
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Then, max|ψ(R) – R| < 10-2 for all the pairs {R,F*} from Table 1. 

Table 1 

Numerical values of turning points (F*,β*) for some R 

R F* β* R F* β* 

0.100 3.89151 3.21747 0.750 56.0988 15.0805 

0.200 5.17081 3.8792 0.775 69.2902 16.863 

0.300 6.92089 4.65662 0.800 87.7304 19.0898 

0.400 9.55557 5.65338 0.825 114.625 21.9514 

0.500 13.8823 7.0206 0.850 156.061 25.7652 

0.600 21.8124 9.04783 0.875 224.779 31.1027 

0.700 38.9122 12.4038 0.900 351.28 39.1067 

0.725 46.3376 13.6211 - - - 

 

 
 

Fig. 4. Evolution of bifurcation curves Fig. 5. Threshold value of F versus R  

In Fig. 4, the evolution of bifurcation curves ГR (in red) is shown, when R = 0.1, 0.3, 0.5, 0.7, 0.8 

(from left to right); in the same figure, the graph of the function β = ϕ(F) passing through the 

corresponding turning points is displayed (in brown). In Fig. 5, the pairs (R ,F*) (in blue) from Table 1 

and the graph (in black) of the function F = ψ(R) are shown. The graph in Fig. 5 shows for which values 

of the radius ratio R and the Frank-Kamenetskii parameter F there exist a steady solution of (6), (8); in 

the same figure, if a point (R ,F) is located below the graph, then there exists a physically realizable 

solution to (6), (8) and if a point (R ,F) is located above the graph, then the problem (6), (8) has no 

solutions and thermal explosion takes place. 

Let us consider the elliptic boundary value problem 

 0, 0,TT Fe T  + = =   (16) 

where   is the boundary of a domain  . It is shown in [10; 11] that closed form solutions exist for 

the problem (16) assuming planar geometry (region between two infinitely long parallel vertical planes) 

and cylindrical geometry (region inside an infinitely tall cylinder of a circular cross-section). Numerical 

solution is found in [10; 11] for the case of spherical geometry (region inside a ball). In the present paper 

the problem (16) or (6), (8) is solved in a region between two concentric infinitely long cylinders using 

methods of the bifurcation theory. In addition to the Frank-Kamenetskii parameter F, there is also 

another parameter R (the radius ratio of the cylinders). The number of steady solutions and their structure 

for the problem (6), (8) as a function of F and R is completely described in this paper. 
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Conclusions 

1. The nonlinear boundary value problem for the base flow in a tall vertical annulus generated by 

internal heat sources is formulated in the paper. 

2. Bifurcation analysis of the nonlinear boundary value problem for the temperature distribution is 

performed for different values of the parameters of the problem: the radius ratio and the Frank-

Kamenetskii parameter.  

3. It is shown that there are two, one, or no positive solutions of the boundary value problem for the 

temperature distribution depending on the values of the parameters F and R 

4. In case of two positive solutions bifurcation analysis defines a physically realizable temperature 

profile, which can be further used in the stability analysis of such flows. 

5. The results of the present study can be used to define the base flow for hydrodynamic stability 

analysis of the biomass thermal conversion problem in cylindrical containers with the objective to 

identify factors stimulating mixing and more efficient energy conversion. Comprehensive analysis 

of instabilities can be used in the design of bioreactors.  
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